
 [Agrawal, 2(4): April, 2013]

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

IJESRT
INTERNATIONAL JOURNA

An Horizontal Aggregation Approach for Preparation of Data Sets in Data Mining
 Mayur N. Agrawal

*1, 2 Department of Computer Science and Engineering, G.H.R.I.E.M, Jalgaon, Maharashtra, India

In Data Mining, Preparing a data set for analysis is generally the most time consuming task, it requires
many complex SQL queries, joining tables and aggregating columns. Existing SQL aggregations have limitations to
prepare data sets because they return one column per aggregated group. In general, a significant manual effort is
required to build data sets, where a horizontal l
generate SQL code to return aggregated columns in a horizontal tabular layout, returning a set of numbers instead of
one number per row. This new class of functions is called horizontal aggrega
data sets with a horizontal denormalized layout, which is the standard layout required by most data mining
algorithms.

Keywords: Dataset, Aggregation.

Introduction

Building a suitable data set for data mining
purposes is a time-consuming task. This task
generally requires writing long SQL statements or
customizing SQL code if it is automatically generated
by some tool. There are two main ingredients in such
SQL code: joins and aggregations. we focus on the
second one. The most widely-known aggregation is
the sum of a column over groups of rows. Some other
aggregations return the average, maximum, minimum
or row count over groups of rows. There exist many
aggregation functions and operators in SQL.
Unfortunately, all these aggregations have limitations
to build data sets for data mining purposes. The main
reason is that, in general, data sets that are stored in a
relational database (or a data warehouse) come from
On-Line Transaction Processing (OLTP) systems
where database schemas are highly normalized. But
data mining, statistical or machine learning
algorithms generally require aggregated data in
summarized form. Based on current available
functions and clauses in SQL, a significant effort is
required to compute aggregations when they are
desired in a cross tabular (horizontal) form, suitable
to be used by a data mining algorithm. Such effort is
due to the amount and complexity of SQL code that
needs to be written, optimized and tested. There are
further practical reasons to return aggregation results
in a horizontal (cross-tabular) layout. Standard
aggregations are hard to interpret when there are
many result rows, especially when grouping
attributes have high cardinalities. To perform analysis
of exported tables into spreadsheets it may be more
convenient to have aggregations on the same group in

 ISSN: 2277

International Journal of Engineering Sciences & Research Technology

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

An Horizontal Aggregation Approach for Preparation of Data Sets in Data Mining
Mayur N. Agrawal*1, Chandrashekar D. Badgujar2

Department of Computer Science and Engineering, G.H.R.I.E.M, Jalgaon, Maharashtra, India
Abstract

In Data Mining, Preparing a data set for analysis is generally the most time consuming task, it requires
eries, joining tables and aggregating columns. Existing SQL aggregations have limitations to

prepare data sets because they return one column per aggregated group. In general, a significant manual effort is
required to build data sets, where a horizontal layout is required. We propose simple, yet powerful, methods to
generate SQL code to return aggregated columns in a horizontal tabular layout, returning a set of numbers instead of
one number per row. This new class of functions is called horizontal aggregations. Horizontal aggregations build
data sets with a horizontal denormalized layout, which is the standard layout required by most data mining

Building a suitable data set for data mining
consuming task. This task

generally requires writing long SQL statements or
customizing SQL code if it is automatically generated
by some tool. There are two main ingredients in such

joins and aggregations. we focus on the
known aggregation is

the sum of a column over groups of rows. Some other
aggregations return the average, maximum, minimum
or row count over groups of rows. There exist many

unctions and operators in SQL.
Unfortunately, all these aggregations have limitations
to build data sets for data mining purposes. The main
reason is that, in general, data sets that are stored in a
relational database (or a data warehouse) come from

ne Transaction Processing (OLTP) systems
where database schemas are highly normalized. But
data mining, statistical or machine learning
algorithms generally require aggregated data in
summarized form. Based on current available

, a significant effort is
required to compute aggregations when they are
desired in a cross tabular (horizontal) form, suitable
to be used by a data mining algorithm. Such effort is
due to the amount and complexity of SQL code that

imized and tested. There are
further practical reasons to return aggregation results

tabular) layout. Standard
aggregations are hard to interpret when there are
many result rows, especially when grouping

ities. To perform analysis
of exported tables into spreadsheets it may be more
convenient to have aggregations on the same group in

one row (e.g. to produce graphs or to compare data
sets with repetitive information). OLAP tools
generate SQL code to transpose results (sometimes
called PIVOT)

Transposition can be more efficient if there
are mechanisms combining aggregation and
transposition together. With such limitations in mind,
we propose a new class of aggregate functions that
aggregate numeric expressions and transpose results
to produce a data set with a horizontal layout.
Functions belonging to this class are called horizontal
aggregations. Horizontal aggregations represent an
extended form of traditional SQL aggregations,
which return a set of values in a horizontal layout
(somewhat similar to a multidimensional vector),
instead of a single value per row. This article
explains how to evaluate and optimize horizontal
aggregations generating standard SQL code. Our
proposed horizontal aggregations provi
unique features and advantages. First, they represent
a template to generate SQL code from a data mining
tool. Such SQL code automates writing SQL queries,
optimizing them and testing them for correctness.
This SQL code reduces manual work in th
preparation phase in a data mining project. Second,
since SQL code is automatically generated it is likely
to be more efficient than SQL code written by an end
user. Third, the data set can be created entirely inside
the DBMS.

Horizontal aggregations just require a small
syntax extension to aggregate functions called in a
SELECT statement. Alternatively, horizontal
aggregations can be used to generate SQL code from

ISSN: 2277-9655

International Journal of Engineering Sciences & Research Technology[854-858]

ENCES & RESEARCH

An Horizontal Aggregation Approach for Preparation of Data Sets in Data Mining

Department of Computer Science and Engineering, G.H.R.I.E.M, Jalgaon, Maharashtra, India

In Data Mining, Preparing a data set for analysis is generally the most time consuming task, it requires
eries, joining tables and aggregating columns. Existing SQL aggregations have limitations to

prepare data sets because they return one column per aggregated group. In general, a significant manual effort is
ayout is required. We propose simple, yet powerful, methods to

generate SQL code to return aggregated columns in a horizontal tabular layout, returning a set of numbers instead of
tions. Horizontal aggregations build

data sets with a horizontal denormalized layout, which is the standard layout required by most data mining

one row (e.g. to produce graphs or to compare data
sets with repetitive information). OLAP tools

spose results (sometimes

Transposition can be more efficient if there
are mechanisms combining aggregation and
transposition together. With such limitations in mind,
we propose a new class of aggregate functions that

ions and transpose results
to produce a data set with a horizontal layout.
Functions belonging to this class are called horizontal
aggregations. Horizontal aggregations represent an
extended form of traditional SQL aggregations,

s in a horizontal layout
(somewhat similar to a multidimensional vector),
instead of a single value per row. This article
explains how to evaluate and optimize horizontal
aggregations generating standard SQL code. Our
proposed horizontal aggregations provide several
unique features and advantages. First, they represent
a template to generate SQL code from a data mining
tool. Such SQL code automates writing SQL queries,
optimizing them and testing them for correctness.
This SQL code reduces manual work in the data
preparation phase in a data mining project. Second,
since SQL code is automatically generated it is likely
to be more efficient than SQL code written by an end
user. Third, the data set can be created entirely inside

ns just require a small
syntax extension to aggregate functions called in a
SELECT statement. Alternatively, horizontal
aggregations can be used to generate SQL code from

 [Agrawal, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[854-858]

a data mining tool to build data sets for data mining
analysis.

As Shown in Fig 1, we have shown how
Horizontal as well as Vertical Aggregation on a
simple dataset. Figure 1 gives an example showing
the input table F, a traditional vertical sum()
aggregation stored in FV and a horizontal
aggregation stored in FH. The basic SQL aggregation
query is:
SELECT D1,D2,sum(A)
FROM F
GROUP BY D1,D2
ORDER BY D1,D2;

Notice table FV has only five rows because
D1=3 and D2=Y do not appear together. Also, the
first row in FV has null in A following SQL
evaluation semantics. On the other hand, table FH
has three rows and two (d = 2) non-key columns,
effectively storing six aggregated values. In FH it is
necessary to populate the last row with null.
Therefore, nulls may come from F or may be
introduced by the horizontal layout.

Fig. 1. Example of F, FV and FH.

Fig. 2. Vertical Aggregation

Methods of Horizontal Aggregation
 Three Methods are proposed for horizontal
aggregation and they are:- SPJ, CASE and PIVOT.
SPJ Method.
 The SPJ method is interesting from a
theoretical point of view because it is based on
relational operators only. The basic idea is to create

one table with a vertical aggregation for each result
column, and then join all those tables to produce FH.
We aggregate from F into d projected tables with d
Select-Project-Join-Aggregation queries (selection,
projection, join, aggregation). Each table FI
corresponds to one subgrouping combination and has
{L1, . . ., Lj} as primary key and an aggregation on A
as the only non-key column. It is necessary to
introduce an additional table F0, that will be outer
joined with projected tables to get a complete result
set. We propose two basic sub-strategies to compute
FH.

The first one directly aggregates from F. The

second one computes the equivalent vertical
aggregation in a temporary table FV grouping by L1,
. . ., Lj,R1, . . .,Rk. Then horizontal aggregations can
be instead computed from FV , which is a
compressed version of F, since standard aggregations
are distributive.
 Now, we will see the actual working of SPJ
Query. It means Select Project Join Query.

INSERT INTO F1
SELECT D1,sum(A) AS A
FROM F
WHERE D2=’X’
GROUP BY D1;

INSERT INTO F2
SELECT D1,sum(A) AS A
FROM F
WHERE D2=’Y’
GROUP BY D1;

INSERT INTO FH
SELECT F0.D1,F1.A AS D2_X,F2.A AS D2_Y
FROM F0 LEFT OUTER JOIN F1 on F0.D1=F1.D1
LEFT OUTER JOIN F2 on F0.D1=F2.D1;

Explanation:- This whole query is broken into 3
parts. In the very first part F1 is Calculated from F0,
Fo is our Initial dataset. F1 contans the output of
dataset when D2=”X” as shown in fig 4. In the

 [Agrawal, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[854-858]

second part After calculating F1 , in the same way F2
is calculated using D2=”y” as shown in fig 5. Part 3
perform the join operation. In this Part Left outer join
is performed between original dataset and F1. This
gives us a new table called as left outer join table, left
outer join gives us the common datasets of both table
and also the uncommon datasets from left table i.e
original table in this case fig 6 depict this operation.
After calculating first left outer join, again one left
outer join operation is performed between the first
left outer join table and F2. From that we get an
output i.e horizontal aggragtion of Original Dataset,
as shown in fig 7.

Fig. 4. Calculating F1

Fig. 5. Calculating F2

Fig. 6. Calculating first left outer join

Fig. 7. Calculating final left outer join i.e Horizontal

Aggregation

CASE Method
For this method we use the ”case”

programming construct available in SQL. The case
statement returns a value selected from a set of values
based on boolean expressions. From a relational
database theory point of view this is equivalent to
doing a simple projection/aggregation query where
each nonkey value is given by a function that returns
a number based on some conjunction of conditions.
We propose two basic sub-strategies to compute FH.
In a similar manner to SPJ, the first one directly
aggregates from F and the second one computes the
vertical aggregation in a temporary table FV and then
horizontal aggregations are indirectly computed from
FV . We now present the direct aggregation method.
Horizontal aggregation queries can be evaluated by
directly aggregating from F and transposing rows at
the same time to produce FH. First, we need to get
the unique combinations of R1, . . .,Rk that define the
matching boolean expression for result columns. The
SQL code to compute horizontal aggregations
directly from F is as follows. Observe V () is a
standard (vertical) SQL aggregation that has a ”case”
statement as argument.
SELECT DISTINCT R1, . . . , Rk
FROM F;
INSERT INTO FH
SELECT L1, . . . , Lj
V(CASE WHEN R1 = v11 and . . . and Rk = vk1
THEN A ELSE null END)
………………,V(CASE WHEN R1 = v1d and . . .
and Rk = vkd
THEN A ELSE null END)
FROM F
GROUP BY L1, L2, . . ., Lj ;

The main difficulty is that there must be a
feedback process to produce the ”case” boolean
expressions. We now consider an optimized version
using FV . Based on FV , we need to transpose rows
to get groups based on L1, . . ., Lj . Query evaluation
needs to combine the desired aggregation with

 [Agrawal, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[854-858]

”CASE” statements for each distinct combination of
values of R1, . . . , Rk. As explained above,
horizontal aggregations must set the result to null
when there are no qualifying rows for the specific
horizontal group. The Boolean expression for each
case statement has a conjunction of k equality
comparisons. The following statements compute FH:
SELECT DISTINCT R1, . . .,Rk
FROM FV ;
INSERT INTO FH
SELECT L1,..,Lj
,sum(CASE WHEN R1 = v11 and .. and Rk = vk1
THEN A ELSE null END)
..
,sum(CASE WHEN R1 = v1d and .. and Rk = vkd
THEN A ELSE null END)
FROM FV
GROUP BY L1, L2, . . ., Lj ;

The main difference between the first code
and second code is that we have a call to sum() in
each term, which preserves whatever values were
previously computed by the vertical aggregation. It
has the disadvantage of using two tables instead of
one as required by the direct computation from F. For
very large tables F computing FV first, may be more
efficient than computing directly from F.
Query for CASE Method:-

INSERT INTO FH
SELECT D1,
SUM(CASE WHEN D2=’X’ THEN A ELSE null

END) as D2_X,
SUM(CASE WHEN D2=’Y’ THEN A ELSE null

END) as D2_Y
FROM F
GROUP BY D1;

PIVOT Method
 We consider the PIVOT operator which is a
built-in operator in a commercial DBMS. Since this
operator can perform transposition it can help
evaluating horizontal aggregations. The PIVOT
method internally needs to determine how many
columns are needed to store the transposed table and
it can be combined with the GROUP BY clause. The
basic syntax to exploit the PIVOT operator to
compute a horizontal aggregation assuming one BY
column for the right key columns (i.e. k = 1) is as
follows:

SELECT DISTINCT R1
FROM F; /* produces v1, . . . , vd */
SELECT L1, L2, ...,Lj
,v1, v2, ..., vd
INTO Ft
FROM F
PIVOT(
V(A) FOR R1 in (v1, v2, ..., vd)

) AS P;
SELECT
L1,L2,...,Lj
,V (v1), V (v2), ..., V (vd)
INTO FH
FROM Ft
GROUP BY L1, L2, ...,Lj;

This set of queries may be inefficient
because Ft can be a large intermediate table. We
introduce the following optimized set of queries
which reduces of the intermediate table:

SELECT DISTINCT R1
FROM F; /* produces v1, . . . , vd */
SELECT
L1, L2, ...,Lj
,v1, v2, ..., vd
INTO FH
FROM (
SELECT L1, L2, ...,Lj,R1,A
FROM F) Ft
PIVOT(
V (A) FOR R1 in (v1, v2, ..., vd)
) AS P;

Notice that in the optimized query the nested
query trims F from columns that are not later needed.
That is, the nested query projects only those columns
that will participate in FH. Alos, the first and second
query can be computed from FV ; this optimization is
evaluated.

Query for PIVOT Method:-

INSERT INTO FH
SELECT D1,[X] as D2_X,[Y] as D2_Y
FROM (SELECT D1, D2, A
FROM F) as p
PIVOT (SUM(A)FOR D2 IN ([X], [Y])
) as pvt;

For all proposed methods to evaluate
horizontal aggregations we summarize common
requirements.

(1) All methods require grouping rows by L1, . . .,
Lj in one or several queries.

(2) All methods must initially get all distinct
combinations of R1, . . .,Rk to know the number and
names of result columns. Each combination will
match an input row with a result column. This step
makes query optimization difficult by standard query
optimization methods because such columns cannot
be known when a horizontal aggregation query is
parsed and optimized.

(3) It is necessary to set result columns to null
when there are no qualifying rows. This is done
either by outer joins or by the CASE statement.

(4) Computation can be accelerated in some cases
by first computing FV and then computing further

 [Agrawal, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[854-858]

aggregations from FV instead of F. The amount of
acceleration depends on how larger is N with respect
to n (i.e. if N >>n). These requirements can be used
to develop more efficient query evaluation
algorithms.

The correct way to treat missing
combinations for one group is to set the result column
to null. But in some cases it may make sense to
change nulls to zero, as was the case to code a
categorical attribute into binary dimensions. Some
aspects about both CASE sub-strategies are worth
discussing in more depth. Notice the boolean
expressions in each term produce disjoint subsets.
The queries above can be significantly accelerated
using a smarter evaluation because each input row
falls on only one result column and the rest remain
unaffected. Unfortunately, the SQL parser does not
know this fact and it unnecessarily evaluates d
Boolean expressions for each input row in F. This
requires O(d) time complexity for each row, instead
of O(1). In theory, the SQL query optimizer could
reduce the number to conjunctions to evaluate down
to one using a hash table that maps one conjunction
to one dimension column. Then the complexity for
one row can decrease from O(d) down to O(1). If an
input query has several terms having a mix of
horizontal aggregations and some of them share
similar subgrouping columns R1, . . .,Rk the query
optimizer can avoid redundant comparisons by
reordering operations. If a pair of horizontal
aggregations does not share the same set of
subgrouping columns further optimization is not
possible. Horizontal aggregations should not be used
when the set of columns {R1, . . . , Rk} have many
distinct values (such as the primary key of F). For
instance, getting horizontal aggregations on
transactionLine using itemId. In theory such query
would produce a very wide and sparse table, but in
practice it would cause a run-time error because the
maximum number of columns allowed in the DBMS
could be exceeded.

Time Complexity and I/O Cost

 We now analyze time complexity for each
method. Recall that N = |F|, n = |FH| and d is the data
set dimensionality (number of cross-tabulated
aggregations).We consider one I/O to read/write one
row as the basic unit to analyze the cost to evaluate
the query. This analysis considers every method
precomputes FV .
SPJ: We assume hash or sort-merge joins are
available. Thus a join between two tables of size O(n)
can be evaluated in time O(n) on average. Otherwise,
joins take time O(n log2n). Computing the sort in the
initial query ”SELECT DISTINCT..” takes O(N
log2(N)). If the right key produces a high d (say d ≥

10 and a uniform distribution of values). Then each σ
query will have a high selectivity predicate. Each |Fi|
≤ n. Therefore, we can expect |Fi| < N. There are d σ
queries with different selectivity with a conjunction
of k terms O(kn + N) each. Then total time for all
selection queries is O(dkn +dN). There are d
GROUP-BY operations with L1, . . ., Lj producing a
table O(n) each. Therefore, the d GROUP-BYs take
time O(dn) with I/O cost 2dn (to read and write).
Finally, there are d outer joins taking O(n) or
O(nlog2(n)) each, giving a total time O(dn) or O(d
nlog2(n)). In short, time is O(Nlog2(N)+dkn+dN)
and I/O cost is Nlog2(N)+3dn+dN with hash joins.
Otherwise, time is O(Nlog2(N) + dknlog2(n) + dN)
and I/O cost is Nlog2(N) + 2dn + dnlog2(n) + dN
with sort-merge joins. Time depends on number of
distinct values, their combination and probabilistic
distribution of values.
CASE: Computing the sort in the initial query
”SELECT DISTINCT..” takes O(N log2(N)). There
are O(dkN) comparisons; notice this is fixed. There is
one GROUP-BY with L1, . . ., Lj in time O(dkn)
producing table O(dn). Evaluation time depends on
the number of distinct value combinations, but not on
their probabilistic distribution. In short, time is
O(Nlog2(N)+dkn+N) and I/O cost is Nlog2(N)+n+N.
As we can see, time complexity is the same, but I/O
cost is significantly smaller compared to SPJ.
PIVOT: We consider the optimized version which
trims F from irrelevant columns and k = 1. Like the
SPJ and CASE methods, PIVOT depends on
selecting the distinct values from the right keys R1, . .
. , Rk. It avoids joins and saves I/O when it receives
as input the trimmed version of F. Then it has similar
time complexity to CASE. Also, time depends on
number of distinct values, their combination and
probabilistic distribution of values.

Conclusion

 Specifically, horizontal aggregations are
useful to create data sets with a horizontal layout, as
commonly required by data mining algorithms and
OLAP cross-tabulation. Basically, a horizontal
aggregation returns a set of numbers instead of a
single number for each group, resembling a multi-
dimensional vector. We proposed an abstract, but
minimal, extension to SQL standard aggregate
functions to compute horizontal aggregations which
just requires specifying subgrouping columns inside
the aggregation function call. From a query
optimization perspective, we proposed three query
evaluation methods. The first one (SPJ) relies on
standard relational operators. The second one
(CASE) relies on the SQL CASE construct. The third
(PIVOT) uses a built-in operator in a commercial
DBMS that is not widely available. The SPJ method

 [Agrawal, 2(4): April, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[854-858]

is important from a theoretical point of view because
it is based on select, project and join (SPJ) queries.
The CASE method is our most important
contribution. It is in general the most efficient
evaluation method and it has wide applicability since
it can be programmed combining GROUP-BY and
CASE statements. We proved the three methods
produce the same result. In future, this work can be
extended to develop a more formal model of
evaluation methods to achieve better results. Also
then we can be developing more complete I/O cost
models.

References

[1] C. Cunningham, G. Graefe, and C.A.
Galindo-Legaria. PIVOT and UNPIVOT:
Optimization and execution strategies in an
RDBMS. In Proc. VLDB Conference, pages
998–1009, 2004.

[2] C. Ordonez. Integrating K-means clustering
with a relational DBMS using SQL. IEEE
Transactions on Knowledge and Data
Engineering (TKDE), 18(2):188–201, 2006.

[3] C. Ordonez. Statistical model computation
with UDFs. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
22, 2010.

[4] S. Sarawagi, S. Thomas, and R. Agrawal.
Integrating association rule mining with
relational database systems: alternatives and
implications. In Proc. ACM SIGMOD
Conference, pages 343–354, 1998.

[5] H. Wang, C. Zaniolo, and C.R. Luo. ATLaS:
A small but complete SQL extension for
data mining and data streams. In Proc.
VLDB Conference, pages 1113–1116, 2003.

[6] J.A. Blakeley, V. Rao, I. Kunen, A. Prout,
M. Henaire, and C. Kleinerman. .NET
database programmability and extensibility
in Microsoft SQL Server. In Proc. ACM
SIGMOD Conference, pages 1087–1098,
2008.

[7] G. Bhargava, P. Goel, and B.R. Iyer.
Hypergraph based reorderings of outer join
queries with complex predicates. In ACM
SIGMOD Conference, pages 304–315, 1995.

[8] C. Ordonez. Horizontal aggregations for
building tabular data sets. In Proc. ACM
SIGMOD Data Mining and Knowledge
Discovery Workshop, pages 35–42, 2004.

[9] C. Ordonez. Vertical and horizontal
percentage aggregations. In Proc. ACM
SIGMOD Conference, pages 866–871, 2004.

[10] E.F. Codd. Extending the database relational
model to capture more meaning. ACM
TODS, 4(4):397–434, 1979

