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Introduction 

Building a suitable data set for data mining 
purposes is a time-consuming task. This task 
generally requires writing long SQL statements or 
customizing SQL code if it is automatically generated 
by some tool. There are two main ingredients in such 
SQL code: joins and aggregations. we focus on the 
second one. The most widely-known aggregation is 
the sum of a column over groups of rows. Some other 
aggregations return the average, maximum, minimum 
or row count over groups of rows. There exist many 
aggregation functions and operators in SQL. 
Unfortunately, all these aggregations have limitations 
to build data sets for data mining purposes. The main 
reason is that, in general, data sets that are stored in a 
relational database (or a data warehouse) come from 
On-Line Transaction Processing (OLTP) systems 
where database schemas are highly normalized. But 
data mining, statistical or machine learning 
algorithms generally require aggregated data in 
summarized form. Based on current available 
functions and clauses in SQL, a significant effort is 
required to compute aggregations when they are 
desired in a cross tabular (horizontal) form, suitable 
to be used by a data mining algorithm. Such effort is 
due to the amount and complexity of SQL code that 
needs to be written, optimized and tested. There are 
further practical reasons to return aggregation results 
in a horizontal (cross-tabular) layout. Standard 
aggregations are hard to interpret when there are 
many result rows, especially when grouping 
attributes have high cardinalities. To perform analysis 
of exported tables into spreadsheets it may be more 
convenient to have aggregations on the same group in 
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Abstract 

In Data Mining, Preparing a data set for analysis is generally the most time consuming task, it requires 
eries, joining tables and aggregating columns. Existing SQL aggregations have limitations to 

prepare data sets because they return one column per aggregated group. In general, a significant manual effort is 
required to build data sets, where a horizontal layout is required. We propose simple, yet powerful, methods to 
generate SQL code to return aggregated columns in a horizontal tabular layout, returning a set of numbers instead of 
one number per row. This new class of functions is called horizontal aggregations. Horizontal aggregations build 
data sets with a horizontal denormalized layout, which is the standard layout required by most data mining 
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one row (e.g. to produce graphs or to compare data 
sets with repetitive information). OLAP tools 
generate SQL code to transpose results (sometimes 
called PIVOT) 

Transposition can be more efficient if there 
are mechanisms combining aggregation and 
transposition together. With such limitations in mind, 
we propose a new class of aggregate functions that 
aggregate numeric expressions and transpose results 
to produce a data set with a horizontal layout. 
Functions belonging to this class are called horizontal 
aggregations. Horizontal aggregations represent an 
extended form of traditional SQL aggregations, 
which return a set of values in a horizontal layout 
(somewhat similar to a multidimensional vector), 
instead of a single value per row. This article 
explains how to evaluate and optimize horizontal 
aggregations generating standard SQL code. Our 
proposed horizontal aggregations provi
unique features and advantages. First, they represent 
a template to generate SQL code from a data mining 
tool. Such SQL code automates writing SQL queries, 
optimizing them and testing them for correctness. 
This SQL code reduces manual work in th
preparation phase in a data mining project. Second, 
since SQL code is automatically generated it is likely 
to be more efficient than SQL code written by an end 
user. Third, the data set can be created entirely inside 
the DBMS. 

Horizontal aggregations just require a small 
syntax extension to aggregate functions called in a 
SELECT statement. Alternatively, horizontal 
aggregations can be used to generate SQL code from 
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a data mining tool to build data sets for data mining 
analysis. 

As Shown in Fig 1, we have shown how 
Horizontal as well as Vertical Aggregation on a 
simple dataset. Figure 1 gives an example showing 
the input table F, a traditional vertical sum() 
aggregation stored in FV and a horizontal 
aggregation stored in FH. The basic SQL aggregation 
query is: 
SELECT D1,D2,sum(A) 
FROM F 
GROUP BY D1,D2 
ORDER BY D1,D2; 

Notice table FV has only five rows because 
D1=3 and D2=Y do not appear together. Also, the 
first row in FV has null in A following SQL 
evaluation semantics. On the other hand, table FH 
has three rows and two (d = 2) non-key columns, 
effectively storing six aggregated values. In FH it is 
necessary to populate the last row with null. 
Therefore, nulls may come from F or may be 
introduced by the horizontal layout. 

 
Fig. 1. Example of F, FV and FH. 

 

 
Fig. 2. Vertical Aggregation 

 
Methods of Horizontal Aggregation 
 Three Methods are proposed for horizontal 
aggregation and they are:- SPJ, CASE and PIVOT. 
SPJ Method. 
 The SPJ method is interesting from a 
theoretical point of view because it is based on 
relational operators only. The basic idea is to create 

one table with a vertical aggregation for each result 
column, and then join all those tables to produce FH. 
We aggregate from F into d projected tables with d 
Select-Project-Join-Aggregation queries (selection, 
projection, join, aggregation). Each table FI 
corresponds to one subgrouping combination and has 
{L1, . . ., Lj} as primary key and an aggregation on A 
as the only non-key column. It is necessary to 
introduce an additional table F0, that will be outer 
joined with projected tables to get a complete result 
set. We propose two basic sub-strategies to compute 
FH. 

 
The first one directly aggregates from F. The 

second one computes the equivalent vertical 
aggregation in a temporary table FV grouping by L1, 
. . ., Lj,R1, . . .,Rk. Then horizontal aggregations can 
be instead computed from FV , which is a 
compressed version of F, since standard aggregations 
are distributive. 
 Now, we will see the actual working of SPJ 
Query. It means Select Project Join Query. 
 
INSERT INTO F1 
SELECT D1,sum(A) AS A 
FROM F 
WHERE D2=’X’ 
GROUP BY D1; 
 
INSERT INTO F2 
SELECT D1,sum(A) AS A 
FROM F 
WHERE D2=’Y’ 
GROUP BY D1; 
 
INSERT INTO FH 
SELECT F0.D1,F1.A AS D2_X,F2.A AS D2_Y 
FROM F0 LEFT OUTER JOIN F1 on F0.D1=F1.D1 
LEFT OUTER JOIN F2 on F0.D1=F2.D1; 
 
Explanation:- This whole query is broken into 3 
parts. In the very first part F1 is Calculated from F0, 
Fo is our Initial dataset. F1 contans the output of 
dataset when D2=”X” as shown in fig 4. In the 
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second part After calculating F1 , in the same way F2 
is calculated using D2=”y” as shown in fig 5. Part 3 
perform the join operation. In this Part Left outer join 
is performed between original dataset and F1. This 
gives us a new table called as left outer join table, left 
outer join gives us the common datasets of both table 
and also the uncommon datasets from left table i.e 
original table in this case fig 6 depict this operation. 
After calculating first left outer join, again one left 
outer join operation is performed between the first 
left outer join table and F2. From that we get an 
output i.e horizontal aggragtion of Original Dataset, 
as shown in fig 7. 

 
Fig. 4. Calculating F1 

 

 
Fig. 5. Calculating F2 

 

 
Fig. 6. Calculating first left outer join 

 

 
Fig. 7. Calculating final left outer join i.e Horizontal 

Aggregation 
 

CASE Method 
For this method we use the ”case” 

programming construct  available in SQL. The case 
statement returns a value selected from a set of values 
based on boolean expressions. From a relational 
database theory point of view this is equivalent to 
doing a simple projection/aggregation query where 
each nonkey value is given by a function that returns 
a number based on some conjunction of conditions. 
We propose two basic sub-strategies to compute FH. 
In a similar manner to SPJ, the first one directly 
aggregates from F and the second one computes the 
vertical aggregation in a temporary table FV and then 
horizontal aggregations are indirectly computed from 
FV . We now present the direct aggregation method. 
Horizontal aggregation queries can be evaluated by 
directly aggregating from F and transposing rows at 
the same time to produce FH. First, we need to get 
the unique combinations of R1, . . .,Rk that define the 
matching boolean expression for result columns. The 
SQL code to compute horizontal aggregations 
directly from F is as follows. Observe V () is a 
standard (vertical) SQL aggregation that has a ”case” 
statement as argument. 
SELECT DISTINCT R1, . . . , Rk 
FROM F; 
INSERT INTO FH 
SELECT L1, . . . , Lj 
V(CASE WHEN R1 = v11 and . . . and Rk = vk1 
THEN A ELSE null END) 
………………,V(CASE WHEN R1 = v1d and . . . 
and Rk = vkd 
THEN A ELSE null END) 
FROM F 
GROUP BY L1, L2, . . ., Lj ; 

The main difficulty is that there must be a 
feedback process to produce the ”case” boolean 
expressions. We now consider an optimized version 
using FV . Based on FV , we need to transpose rows 
to get groups based on L1, . . ., Lj . Query evaluation 
needs to combine the desired aggregation with 
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”CASE” statements for each distinct combination of 
values of R1, . . . , Rk. As explained above, 
horizontal aggregations must set the result to null 
when there are no qualifying rows for the specific 
horizontal group. The Boolean expression for each 
case statement has a conjunction of k equality 
comparisons. The following statements compute FH: 
SELECT DISTINCT R1, . . .,Rk 
FROM FV ; 
INSERT INTO FH 
SELECT L1,..,Lj 
,sum(CASE WHEN R1 = v11 and .. and Rk = vk1 
THEN A ELSE null END) 
.. 
,sum(CASE WHEN R1 = v1d and .. and Rk = vkd 
THEN A ELSE null END) 
FROM FV 
GROUP BY L1, L2, . . ., Lj ; 

The main difference between the first code 
and second code is that we have a call to sum() in 
each term, which preserves whatever values were 
previously computed by the vertical aggregation. It 
has the disadvantage of using two tables instead of 
one as required by the direct computation from F. For 
very large tables F computing FV first, may be more 
efficient than computing directly from F. 
Query for CASE Method:- 

INSERT INTO FH 
SELECT D1, 
SUM(CASE WHEN D2=’X’ THEN A ELSE null 

END) as D2_X, 
SUM(CASE WHEN D2=’Y’ THEN A ELSE null 

END) as D2_Y 
FROM F 
GROUP BY D1; 

  
PIVOT Method 
  We consider the PIVOT operator which is a 
built-in operator in a commercial DBMS. Since this 
operator can perform transposition it can help 
evaluating horizontal aggregations. The PIVOT 
method internally needs to determine how many 
columns are needed to store the transposed table and 
it can be combined with the GROUP BY clause. The 
basic syntax to exploit the PIVOT operator to 
compute a horizontal aggregation assuming one BY 
column for the right key columns (i.e. k = 1) is as 
follows: 

SELECT DISTINCT R1 
FROM F; /* produces v1, . . . , vd */ 
SELECT L1, L2, ...,Lj 
,v1, v2, ..., vd 
INTO Ft 
FROM F 
PIVOT( 
V(A) FOR R1 in (v1, v2, ..., vd) 

) AS P; 
SELECT 
L1,L2,...,Lj 
,V (v1), V (v2), ..., V (vd) 
INTO FH 
FROM Ft 
GROUP BY L1, L2, ...,Lj; 

This set of queries may be inefficient 
because Ft can be a large intermediate table. We 
introduce the following optimized set of queries 
which reduces of the intermediate table: 

 
SELECT DISTINCT R1 
FROM F; /* produces v1, . . . , vd */ 
SELECT 
L1, L2, ...,Lj 
,v1, v2, ..., vd 
INTO FH 
FROM ( 
SELECT L1, L2, ...,Lj,R1,A 
FROM F) Ft 
PIVOT( 
V (A) FOR R1 in (v1, v2, ..., vd) 
) AS P; 

Notice that in the optimized query the nested 
query trims F from columns that are not later needed. 
That is, the nested query projects only those columns 
that will participate in FH. Alos, the first and second 
query can be computed from FV ; this optimization is 
evaluated. 
 
Query for PIVOT Method:- 

INSERT INTO FH 
SELECT D1,[X] as D2_X,[Y] as D2_Y 
FROM ( SELECT D1, D2, A  
FROM F) as p 
PIVOT (SUM(A)FOR D2 IN ([X], [Y]) 
) as pvt; 

For all proposed methods to evaluate 
horizontal aggregations we summarize common 
requirements.  

(1) All methods require grouping rows by L1, . . ., 
Lj in one or several queries.  

(2) All methods must initially get all distinct 
combinations of R1, . . .,Rk to know the number and 
names of result columns. Each combination will 
match an input row with a result column. This step 
makes query optimization difficult by standard query 
optimization methods because such columns cannot 
be known when a horizontal aggregation query is 
parsed and optimized.  

(3) It is necessary to set result columns to null 
when there are no qualifying rows. This is done 
either by outer joins or by the CASE statement.  

(4) Computation can be accelerated in some cases 
by first computing FV and then computing further 
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aggregations from FV instead of F. The amount of 
acceleration depends on how larger is N with respect 
to n (i.e. if N >>n). These requirements can be used 
to develop more efficient query evaluation 
algorithms.  

The correct way to treat missing 
combinations for one group is to set the result column 
to null. But in some cases it may make sense to 
change nulls to zero, as was the case to code a 
categorical attribute into binary dimensions. Some 
aspects about both CASE sub-strategies are worth 
discussing in more depth. Notice the boolean 
expressions in each term produce disjoint subsets. 
The queries above can be significantly accelerated 
using a smarter evaluation because each input row 
falls on only one result column and the rest remain 
unaffected. Unfortunately, the SQL parser does not 
know this fact and it unnecessarily evaluates d 
Boolean expressions for each input row in F. This 
requires O(d) time complexity for each row, instead 
of O(1). In theory, the SQL query optimizer could 
reduce the number to conjunctions to evaluate down 
to one using a hash table that maps one conjunction 
to one dimension column. Then the complexity for 
one row can decrease from O(d) down to O(1). If an 
input query has several terms having a mix of 
horizontal aggregations and some of them share 
similar subgrouping columns R1, . . .,Rk the query 
optimizer can avoid redundant comparisons by 
reordering operations. If a pair of horizontal 
aggregations does not share the same set of 
subgrouping columns further optimization is not 
possible. Horizontal aggregations should not be used 
when the set of columns {R1, . . . , Rk} have many 
distinct values (such as the primary key of F). For 
instance, getting horizontal aggregations on 
transactionLine using itemId. In theory such query 
would produce a very wide and sparse table, but in 
practice it would cause a run-time error because the 
maximum number of columns allowed in the DBMS 
could be exceeded. 
 
Time Complexity and I/O Cost  

 We now analyze time complexity for each 
method. Recall that N = |F|, n = |FH| and d is the data 
set dimensionality (number of cross-tabulated 
aggregations).We consider one I/O to read/write one 
row as the basic unit to analyze the cost to evaluate 
the query. This analysis considers every method 
precomputes FV . 
SPJ: We assume hash or sort-merge joins are 
available. Thus a join between two tables of size O(n) 
can be evaluated in time O(n) on average. Otherwise, 
joins take time O(n log2n). Computing the sort in the 
initial query ”SELECT DISTINCT..” takes O(N 
log2(N)). If the right key produces a high d (say d ≥ 

10 and a uniform distribution of values). Then each σ 
query will have a high selectivity predicate. Each |Fi| 
≤ n. Therefore, we can expect |Fi| < N. There are d σ 
queries with different selectivity with a conjunction 
of k terms O(kn + N) each. Then total time for all 
selection queries is O(dkn +dN). There are d 
GROUP-BY operations with L1, . . ., Lj producing a 
table O(n) each. Therefore, the d GROUP-BYs take 
time O(dn) with I/O cost 2dn (to read and write). 
Finally, there are d outer joins taking O(n) or 
O(nlog2(n)) each, giving a total time O(dn) or O(d 
nlog2(n)). In short, time is O(Nlog2(N)+dkn+dN) 
and I/O cost is Nlog2(N)+3dn+dN with hash joins. 
Otherwise, time is O(Nlog2(N) + dknlog2(n) + dN) 
and I/O cost is Nlog2(N) + 2dn + dnlog2(n) + dN 
with sort-merge joins. Time depends on number of 
distinct values, their combination and probabilistic 
distribution of values. 
CASE: Computing the sort in the initial query 
”SELECT DISTINCT..” takes O(N log2(N)). There 
are O(dkN) comparisons; notice this is fixed. There is 
one GROUP-BY with L1, . . ., Lj in time O(dkn) 
producing table O(dn). Evaluation time depends on 
the number of distinct value combinations, but not on 
their probabilistic distribution. In short, time is 
O(Nlog2(N)+dkn+N) and I/O cost is Nlog2(N)+n+N. 
As we can see, time complexity is the same, but I/O 
cost is significantly smaller compared to SPJ.  
PIVOT: We consider the optimized version which 
trims F from irrelevant columns and k = 1. Like the 
SPJ and CASE methods, PIVOT depends on 
selecting the distinct values from the right keys R1, . . 
. , Rk. It avoids joins and saves I/O when it receives 
as input the trimmed version of F. Then it has similar 
time complexity to CASE. Also, time depends on 
number of distinct values, their combination and 
probabilistic distribution of values. 

 
Conclusion 

     Specifically, horizontal aggregations are 
useful to create data sets with a horizontal layout, as 
commonly required by data mining algorithms and 
OLAP cross-tabulation. Basically, a horizontal 
aggregation returns a set of numbers instead of a 
single number for each group, resembling a multi-
dimensional vector. We proposed an abstract, but 
minimal, extension to SQL standard aggregate 
functions to compute horizontal aggregations which 
just requires specifying subgrouping columns inside 
the aggregation function call. From a query 
optimization perspective, we proposed three query 
evaluation methods. The first one (SPJ) relies on 
standard relational operators. The second one 
(CASE) relies on the SQL CASE construct. The third 
(PIVOT) uses a built-in operator in a commercial 
DBMS that is not widely available. The SPJ method 
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is important from a theoretical point of view because 
it is based on select, project and join (SPJ) queries. 
The CASE method is our most important 
contribution. It is in general the most efficient 
evaluation method and it has wide applicability since 
it can be programmed combining GROUP-BY and 
CASE statements. We proved  the three methods 
produce the same result. In future, this work can be 
extended to develop a more formal model of 
evaluation methods to achieve better results. Also 
then we can be developing more complete I/O cost 
models. 
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